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The need to simulate fully developed turbulence with wide range of scales led us to
use the Piecewise Parabolic Method (PPM) to solve the Euler equations of motions.
To obtain data for 3-D homogeneous compressible decaying turbulence numerical
simulations were performed on computational meshes of up to 10243 zones. These
data were compared with data obtained by solving the Navier–Stokes (NS) equations.
Results of studying the kinetic energy, enstrophy, and the energy power spectra
with different resolutions are presented for both the PPM and NS data. The results
of the comparison show convergence of the PPM and NS solutions to the same
limit. c© 2000 Academic Press
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1. INTRODUCTION

Over the last few years the Laboratory for Computational Science and Engineering
(LCSE) has been simulating the development and decay of compressible turbulence in
three-dimensional (3-D) periodic flows [1–4] using the Piecewise Parabolic Method (PPM)
[5–7] to solve the Euler equations of fluid dynamics. These simulations rely on the numerical
dissipation of this difference scheme to transform turbulent kinetic energy into heat on the
finest scales, while leaving the larger scales unaffected. The effectiveness of this approach
has been investigated earlier [3, 4] as well as the features of the numerical dissipation [8, 9].

It has long been believed that Navier–Stokes computations are the preferred way to simu-
late turbulence. While it is true and ideal, unfortunately the complexity of the computations
is so far beyond the current capabilities of the modern computers, that it has forced us to
depart from this approach and to use Euler schemes instead.
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To show the validity and effectiveness of using Euler schemes and PPM as one of them
for turbulence modeling, convergence tests and comparison with the Navier–Stokes (NS)
solutions were performed in 2-D.

Convergence tests of 2-D PPM of compressible turbulence [2–4] showed that the velocity
power spectra of PPM agree within 10% in models resolved on meshes ranging from 1282

to 10242. Comparisons of resolved NS computations on the same problem on a given grid
showed that computed data in both NS and PPM runs agreed at large scales. Structures in
the runs are identical with respect to their location and shape although they are visually
slightly blurred by viscosity in the 2-D NS run. As the meshes are refined, these simulations
all converge to the same high Reynolds number limit, but the Euler simulations reach this
limit much faster.

In spite of long use and successful applications of the PPM [15–17, 21, 22] there is still a
need to continue comparative analysis of PPM and NS data in 3-D and with higher resolution.

Increases in computer speed, storage, and our ability to analyze significant volumes of
data allowed us to proceed with comparisons of PPM and NS computations for the 3-D
case with mesh size up to 5123 and even up to 10243 for PPM. Such comparisons and
convergence tests will be the focus of this paper.

2. NUMERICAL SIMULATIONS

The data for the PPM run of 10243 which are analyzed in this paper are the result of the
collaboration of research teams at LCSE and Los Alamos National Laboratory (LANL),
where the simulations were carried out by using Silicon Graphics Origin-2000 computing
hardware. The PPM code and shared-memory multi-processor cluster computer architecture
allowed us to achieve a parallel efficiency of over 90% on 128 Origin-2000 processors, with
a total sustained performance of 14 Gflops/s .

The NS run of 5123 was performed at the National Center for Supercomputing Applica-
tions (NCSA) on 64 processors of the Silicon Graphics Origin-2000 machine.

Our simulations focused on the simplest case of homogeneous isotropic turbulence for
which periodic boundary conditions are appropriate. We began with a uniform gas at rest
in a periodic cubical box, with the length of each side equal to 2π . Density was unity and
the ratio of specific heat wasγ = 1.4 (as appropriate for air).

Velocity perturbations were introduced by randomly oriented, isentropic, sinusoidal
sound and shear waves concentrated on the large scales with an rms Mach number of
one-half. The initial condition has a velocity power spectrumk4 exp(−k/k0)

2, with k0= 2,
which places 99% of the energy in modes withk less than 4. These initial disturbances
have wavelengths chosen from a distribution centered on half the width of the simulation
cube. Their amplitudes were chosen to produce a root mean square velocity magnitude
corresponding to a Mach number of one-half. The fraction of the compressible component
of the velocity to its solenoidal component was 1/10.

The energy-containing scale of this initial state wasπ , or half the size of the periodic box.
The wave crossing time of the energy containing scale in the initial state would be our unit
of time. Such choice of units allows us to be consistent with our previous work as well as
with the standard conventions used by others in modeling incompressible flows of this type.

The decaying case has been modeled, so the flow is not driven and the typical magnitude
of velocity decays in time. We provide the data for runs up to timet = 2, which contains
the time interval with maximum enstrophy.
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2.1. PPM Euler simulations.The PPM was originally developed to simulate the un-
steady flows with strong shock often found in astrophysics, such as supernova explosions
and supersonic jets. It used the ideas of Bram van Leer [18] to extend the method of Godunov
[19] to a higher formal order of accuracy. Its success comes from the combination of sev-
eral techniques. Given zone-averaged data, a high-order interpolation is used to construct
descriptions of the relevant variables everywhere in space, providing accuracy in regions of
smooth flow. Monotonicity constraints are applied to ensure that the advection of monotone
data produces monotone results.

The importance of monotonicity [23] has been the theme of the work on computing
turbulent flows that has been done by J. P. Boris, F. F. Grinstein, and co-workers over the
last ten years [24, 26]. They have done numerous tests of the concept they call MI-LES.
Furthermore, the recent work by C. Fureby and F. F. Grinstein has shown that monotone
algorithms have the right properties for subgrid models [25]. Decaying homogeneous tur-
bulence computed with various monotone methods, a Navier–Stokes code, an Euler code,
and then also with MI-LES, showing the proper spectrum, are discussed in Refs. [27, 28].

Several additional features of PPM contribute to its effectiveness. Discontinuity detec-
tion algorithms are used to modify the interpolation in zones near discontinuities in order
to better represent these structures. This helps to prevent numerical viscosity from smear-
ing discontinuities as they move through the computational grid. Shock detection is also
performed so that an appropriate amount of localized numerical dissipation is added only
to those zones in shocks.

Multi-dimensional flows are solved by applying a one-dimensional scheme in alteration
according to the directional-splitting algorithm of Strang [20]. In our case this provides the
second-order accuracy.

The amplitude of the effective kinematic viscosity of PPM on a given scale on a given
computational mesh was analyzed by Porter and Woodward [9]. It was found that the
effective Reynolds number for flows on a given length scale varies asN3, whereN is the
number of computational cells across the wavelength of the structure in question.

For the case of the 10243 computation, the integral scale at timet = 2 was spanned by
262 computational cells which led to an effective Reynolds numberRe= 3.6× 107. This
large value ofRerepresents the extremely small amplitude of the numerical dissipation of
PPM relative to the inertial terms on the largest scales of these well-resolved simulations.
The effective Prandtl number for our simulation is near unity [9].

We adopt the fluid dynamical equations for a perfect polytropic inviscid gas, which can
be written as

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂u
∂t
+ u · ∇u = − 1

ρ
∇P (2)

∂(ρE)

∂t
+∇ · (uρE) = −∇ · (uP), (3)

whereρ is the density, andu is the velocity, and where the total energy density per unit
massE= 1

2u2+P/(γ − 1)ρ. HereP is the pressure, andγ = 1.4 is the adiabatic index
with P= (γ − 1)ρε. The internal energy is related to the temperatureT and heat capacity
at constant volumecv by ε= cvT . Finally, the speed of soundc is given byc2= γ (γ − 1)ε.
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The velocity field is decomposed into its solenoidalus and compressionaluc components
asu= us+ uc with ∇ ·us= 0 and∇ ×uc= 0.

The initial rms Mach number is one-half. We chose units so that the mean densityρ and
initial mean speed of soundc0 were both equal to unity.

The purpose of an Euler solver like PPM is to approximate on a given grid the limit
solution of the Navier–Stokes equations as the viscosity and thermal conductivity tend to
zero. To establish how well PPM is doing this job in the context of these 3-D turbulent flows
we generated for comparison a sequence of resolved Navier–Stokes solutions with Prandtl
number unity and with increasingly large Reynolds numbers.

2.2. Navier–Stokes simulations.The series of NS runs was simulated with computa-
tional meshes of increasing resolution and the results were compared with PPM runs on
these same grids. The levels of viscosity and thermal conductivity were clearly and un-
equivocally specified for NS runs, while for PPM the numerical viscosity and thermal
conductivity decreased automatically as the mesh resolution increased. The Prandtl number
was equal to one in all of these runs. A PPM directionally split Rieman solver was used
with the addition of the Navier–Stokes viscous term in the right hand side of Eq. (2) in the
form ∂k{η(∂kvi + ∂i vk− 2/3δik∂lvl )}+ ∂i (ζ ∂lvl ). Assuming the bulk viscosity isζ = 0, we
are changing the dynamic viscosityη.

An additional energy flux due to thermal diffusivityχ is present as a source term in the
energy Eq. (3)∼χ∇T . We are keeping the thermal diffusivity as a constant.

For NS simulations at each mesh resolution we attempted to impose the minimum level
of Navier–Stokes dissipation that was consistent with an accurate numerical solution. We
varied the dynamical viscosity coefficient in the Navier–Stokes solver while keeping the
ratio of the integral and dissipative scales the same. In order to do so we kept the variation of
the dynamic viscosity coefficient proportional toN−4/3, whereN is the size of the mesh [14].
Note that in this case the ratio of the dissipative scaleλd= (ν/ul)3/4l and the size of the
mesh zone1x remain constant.

The viscosity coefficient consistent with an accurate numerical solution was set for a
grid of 643 cells by demanding that the velocity power spectrum of this solution not change
upon grid refinement.

To execute the series of NS runs it was necessary to choose the initial viscosity, which
would decrease with each mesh size doubling according to the scaling described above. For
the series of low resolution single precision runs of sizes 323, 643, and 1283 for dynamical
viscosity coefficients varying from 0.001 to 0.0001 it was concluded that the dynamical
viscosity coefficientν= 0.0005 is an appropriate value. At this viscosity the velocity power
spectra for meshes 643 and 1283 coincide nearly up to the Nyquist frequency of the lower
resolution run. At the same time for the 323 grid the Navier–Stokes solution is clearly
under-resolved. The increase of the viscosity to 0.001 allowed us to obtain resolved NS
solutions for all three mesh sizes (see Fig. 1). Some insignificant flattening of the spectra
near the Nyquist frequency was due to single precision of our initial runs. In following
double precision runs it was not observed.

The combination of resolved and under-resolved runs, which were done in double pre-
cision, we can see in Fig. 2. For viscosity coefficient 0.0005 we fully resolve flow at mesh
size of 643; at the same time we observe flattening of the spectra near the Nyquist frequency
for mesh 1283. This flattening disappears when we decrease the viscosity. We should note
that curves of the kinetic energy dissipation with time for all meshes coincide with a high
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FIG. 1. Velocity power spectra att = 2 for a series of runs with different choices of the dynamic viscosity
coefficient in the Navier–Stokes solver. Mesh sizes of 32, 64, 128 zones on a side were used for each choice of
viscous coefficient.

accuracy, proving that we indeed have resolved Navier–Stokes calculations. Moreover, we
can see in Fig. 3 that increase of the resolution from 64 to 128 for viscosityη= 0.0005
provides an indistinguishable difference in the decay of the kinetic energy. For the same
viscosity any following growth of the resolution leads to an increase of the error in the
Nyquist frequency neighborhood.

3. RESULTS AND DISCUSSION

We begin by presenting the results obtained for enstrophy, which is defined asÄs
1=∫∞

0 k2Es(k) dk, Fig. 4, whereEs(k) corresponds to the kinetic energy for the solenoidal



230 SYTINE ET AL.

0 .5 1 1.5 2
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Log K (the wave vector)

Navier-Stokes; n=0.0005; decaying turbulence

Lo
g 

E
to

t (
 T

ot
al

 e
ne

rg
y)

FIG. 2. Velocity power spectra att = 2 for a series of runs with the dynamic viscosity coefficientη= 0.0005.
Mesh sizes of 32, 64, 128 zones on a side.

0 .5 1 1.5 2 2.5

.04

.06

.08

.1

.12

Navier-Stokes n = 0.0005

 time

K
in

et
ic

 e
ne

rg
y

FIG. 3. Decay of the kinetic energy in time for mesh sizes 64 and 128 and constant viscosity coefficient
η= 0.0005.
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FIG. 4. The enstrophy time dependence for decaying compressible turbulence. The initial Mach number is
0.5. Results for the PPM Euler code on meshes of 643, 1283, 2563, 5123, and 10243 cells are shown. In all cases,
the enstrophy peaks at around time 1.5.

component of velocity in Fourier space integrated on a sphere of radiusk. Similar mesh size
dependency for both PPM and NS calculations is observed. The maximum of the enstrophy
is reached earlier for mesh sizes 643 and 1283, while the maximum for 2563 was reached
later. With further increases in mesh size to 5123 and 10243 the enstrophy maximum appears
at slightly earlier times.

The enstrophy for our series of NS runs, Fig. 5, is lower in value and seems strongly
damped by high viscosity in low resolution runs. In both PPM and NS calculations the
enstrophy behavior is consistent with the expectation that the enstrophy tends to infinity at
a finite time in a zero viscosity limit [14]. A significant growth of enstrophy is observed when
the viscosity is decreased, while the time of maximum enstrophy remains roughly the same.

For both our PPM and NS simulations the system is past its maximum of the enstrophy
by time two in our time units. Therefore we have chosen to compare our results from these
simulations at time 2. In all runs all available modes have been excited by this time, energy
has reached the dissipation scale, and the flows are fully turbulent.

In order to measure the intensity of compressive motions, we examine the quantity
Äc

1=
∫∞

0 k2Ec(k) dk, the second moment of the power spectrum for compression energy,
whereEc(k) corresponds to the kinetic energy for the compressive component of velocity
in Fourier space integrated on a sphere of radiusk. Figure 6 represents a comparison for
this quantity of PPM and NS runs. The step on the curves corresponds to shock formation
in compressible flow. We can see that both methods show similar qualitative results for this
parameter. The time when all shocks in a volume have already formed is aboutt = 0.4 and
it is the same for both the PPM and NS runs in Figs. 6 and 7.

The dynamics of kinetic energy with time for PPM is represented in Fig. 8. The com-
parison of the kinetic energy time dependence for the PPM and NS runs is presented in
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FIG. 5. The enstrophy time dependence for decaying compressible turbulence, with initial Mach number= 0.5.
Results for well-resolved Navier–Stokes simulations on grids of 643, 1283, 2563, 5123 are shown, corresponding
to Reynolds numbers of 500, 1260, 3175, and 8000, respectively. Results for the PPM Euler code on a 10243 grid
are also shown for comparison.
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FIG. 6. The time evolution of the quantityÄc
1 (the second moment of the power spectrum for compression

energy), which measures the intensity of compressive motions. Navier–Stokes and the 10243 PPM Euler runs are
compared. The initial Mach number= 0.5. Mesh sizes for NS runs vary from 64 up to 512 zones on a side. The
PPM run uses a 10243 grid.
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FIG. 7. The time evolution of the quantityÄc
1 (the second moment of the power spectrum for compres-

sion energy), which measures the intensity of compressive motions in five PPM Euler simulations of decaying
compressible turbulence. The initial Mach number is 0.5, and grids of 643, 1283, 2563, 5123, and 10243 are used.
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FIG. 8. The kinetic energy time dependence for decaying compressible turbulence. The initial Mach number
is 0.5. Mesh size changes from 64 up to 1024 zones per side of the cube. Computing method is PPM.
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FIG. 9. The kinetic energy time dependence for decaying compressible turbulence. The initial Mach number
is 0.5. Mesh size changes from 64 up to 512 zones per side of the cube for Navier–Stokes solver. The 10243-zone
PPM solution is presented for comparison.

Fig. 9. One can clearly see the convergence of the kinetic energy time history for the NS
runs towards that for PPM. We can see that the rate of decay of the kinetic energy at the
later times becomes steeper as the mesh size increases, while still converging towards the
value for PPM, which is the steepest at these later times. In both cases there is a bend in
the time history curve near time aboutt = 1.4 or t = 1.5, which corresponds to the time
when the enstrophy reaches its maximum. After this time all modes of the system reach
their maximum excitation and start decaying.

A comparison of the kinetic energy time dependence for the 1283 PPM and 5123 NS
simulations, Fig. 10, led us to the conclusion that the PPM method requires roughly
four times less resolution than NS to model the same system. If instead we compare
the time histories of enstrophy, we conclude that PPM requires only a factor 2 less grid
resolution.

We could not expect PPM and NS simulations to agree in all respects on any pair of
grids, but we believe the evidence presented here clearly indicates that PPM delivers on the
promise of Euler schemes to produce on a given grid better approximations to the infinite
Reynolds number limit than can be obtained by using the Navier–Stokes equations at a
finite Reynolds number.

The power spectra of velocity are represented in Fig. 11. The linear slope indicated by the
straight line is the Kolmogorov (−5/3) law. We can see that between wavenumbersk1= 4
andk2= 32 the highest resolution PPM spectrum shows the Kolmogorov inertial range law.

Here we define the inertial range to be the range of scales where the effects of any
driving force, particular initial condition, geometrical boundaries, or small scale dissipation
are negligible. We have no driving terms present here. The initial condition has a velocity
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FIG. 10. A comparison of the kinetic energy time dependence for PPM and NS solutions. Decaying com-
pressible turbulence. The initial Mach number is 0.5. The mesh size for Navier–Stokes solver is 512 zones per
side of the cube and it is 128 zones for PPM solution.
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FIG. 11. A comparison of velocity power spectra in 5 PPM runs on progressively finer grids ranging from
64 to up to 1024 zones per side of the cube. The initial Mach number for all runs is 0.5. All spectra represent
time t = 2 after 4 sound crossings of the energy containing scale. A line with a slopek−5/3 represents Kolmogorov
inertia range slope.
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FIG. 12. A comparison of velocity power spectra in 4 NS runs on progressively finer grids ranging from 64
to up to 512 zones per side of the cube. The initial Mach number is 0.5. The PPM solution on the 10243 grid
is presented for comparison. All spectra represent timet = 2 after 4 sound crossings of the energy containing
scale. The line with a slopek−5/3 represents the Kolmogorov inertial range slope. Reynolds numbers for the NS
simulations reach 8000.

power spectrumk4 exp(−k/k0)
2, withk0= 2, which places 99% of the energy in modes with

k less than 4. Our boundaries are periodic and have little affect on the flow for modes with
wavenumbers more than 8. The small scale dissipation in our modes is due to the numerical
dissipation of the PPM and, for the 10243 grid, starts for modes with wavenumbers higher
than 128 (Fig. 12).

On the smallest scales ranging from 2 to 12 times the width of computational cell, the
numerical viscosity of the PPM code provides dissipation that directly dampens the fluid
motion and converts kinetic energy into heat with total energy conserved to machine round-
off precision.

Our tests of the convergence of the velocity power spectra as the computational mesh
resolution is increased indicate that dissipative effects are negligible in the 10243 data filtered
at k= 32 [4]. On large scales up to 32 cell widths PPM viscosity affects flow indirectly.
An analysis of this effect can be found in [10].

Near the dissipation range the velocity power spectra display an approximatek−1 power
law, which first was noted in [3]. The experimental data of Gagne obtained in the wind
tunnel [11] as well as the work of other authors [13, 12] indicate similar behavior. Such
accumulation of energy in small scales was not observed in our 2-D simulations [3],
so one can see here the 3-D effect of the dynamics of vortex tubes near the dissipation
scale.

We must point out that our NS run with mesh size 5123 shows no significant inertial
range. Therefore to obtain the separation of energy containing and dissipation ranges using
NS one should use a mesh of at least 20483 and more likely of 40963 cells.
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4. CONCLUSION

Our direct comparison of homogeneous decaying compressible turbulence modeled by
using the PPM Euler method with Navier–Stokes calculations indicates that PPM can ac-
curately simulate turbulent flow in a wide range of spatial scales.

Our convergence results for increasing Reynolds number indicate that 3-D Navier–Stokes
flows with Reynolds numbers high enough to separate the energy containing and dissipation
ranges in supersonic flow would require meshes of 20483 or larger, which are unattainable
on present computers.

We wish to use the data from our simulation to test assumptions made in constructing
turbulence closure models. Since these assumptions pertain to the Kolmogorov inertial
range only, one needs to deal with data for which this range covers a reasonable interval in
wavenumber and for which features pertaining to larger or smaller scales may be effectively
and unambiguously filtered out. We concluded that PPM simulations on 10243 grid meet
these requirements. Such simulations are the most efficient means we know to obtain un-
biased “experimental” data from which appropriate statistical information can be extracted
to guide theoretical modeling efforts for compressible turbulent flows in the limit of very
high Reynolds numbers.
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